OINK FM

Documentation

Technical documentation for OINK FM's AI-powered crypto radio platform

OINK FM is a revolutionary AI-powered crypto radio station broadcasting 24/7 on the Solana blockchain. Our platform combines advanced AI personalities with real-time market analysis, creating an unfiltered source of crypto intelligence that learns and evolves with the market.

Key Features

  • AI-Powered Hosts: Porky & Perky deliver real-time market analysis
  • 24/7 Broadcasting: Continuous crypto radio with music and commentary
  • Token Burns: Deflationary mechanism through content submissions
  • Community Driven: User-submitted content shapes programming
  • Solana Native: Built for speed and efficiency on Solana
Architecture Overview
// OINK FM System Architecture
use solana_program::{
    account_info::AccountInfo,
    entrypoint,
    entrypoint::ProgramResult,
    msg,
    pubkey::Pubkey,
};

#[derive(Debug)]
pub struct OinkFMStation {
    pub authority: Pubkey,
    pub token_mint: Pubkey,
    pub burn_wallet: Pubkey,
    pub total_burned: u64,
    pub broadcast_hours: u64,
    pub ai_learning_state: AIState,
}

#[derive(Debug)]
pub struct AIState {
    pub porky_knowledge_base: Vec<KnowledgeNode>,
    pub perky_analysis_engine: AnalysisEngine,
    pub market_sentiment: f64,
    pub learning_iterations: u64,
}

Installation

Cargo.toml
# Add to your Cargo.toml
[dependencies]
oinkfm-sdk = "0.1.0"
solana-client = "1.17"
tokio = { version = "1.0", features = ["full"] }
anchor-client = "0.29.0"

Basic Usage

Rust
use oinkfm_sdk::{OinkFMClient, SubmissionType};
use solana_client::RpcClient;
use std::env;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize OINK FM client
    let rpc_url = env::var("SOLANA_RPC_URL")
        .unwrap_or_else(|_| "https://api.mainnet-beta.solana.com".to_string());
    
    let client = OinkFMClient::new(&rpc_url).await?;
    
    // Get current station stats
    let stats = client.get_station_stats().await?;
    println!("Total tokens burned: {}", stats.total_burned);
    println!("Hours broadcasted: {}", stats.broadcast_hours);
    
    // Submit content to OINK FM
    let submission = client
        .submit_content(
            SubmissionType::Message {
                content: "Hello from Rust!".to_string(),
                author: "RustDev".to_string(),
            },
            500, // 500 OINKFM tokens
        )
        .await?;
    
    println!("Submission ID: {}", submission.id);
    
    Ok(())
}
GET /api/v1/station/stats Live

Get current station statistics including burned tokens and broadcast hours.

Response Example:
{
  "total_burned": 1250000,
  "broadcast_hours": 8760,
  "market_cap": 2500000,
  "current_listeners": 1337,
  "ai_learning_iterations": 450782
}
POST /api/v1/submissions Live

Submit content to OINK FM (requires token payment).

Parameter Type Required Description
type string video, song, or message
content object Content data based on submission type
payment_signature string Solana transaction signature for token payment
email string Contact email for submission updates
Request Example:
{
  "type": "message",
  "content": {
    "text": "OINK FM is revolutionizing crypto media!",
    "author": "CryptoPig",
    "category": "market_analysis"
  },
  "payment_signature": "3Ky7ZX9...",
  "email": "user@example.com"
}
GET /api/v1/ai/sentiment Live

Get current AI market sentiment analysis from Porky & Perky.

Response Example:
{
  "overall_sentiment": 0.67,
  "porky_analysis": {
    "sentiment": 0.72,
    "confidence": 0.89,
    "key_indicators": ["bullish_momentum", "volume_increase"]
  },
  "perky_analysis": {
    "sentiment": 0.62,
    "confidence": 0.94,
    "concerns": ["regulatory_uncertainty", "market_volatility"]
  },
  "last_updated": "2025-07-01T12:00:00Z"
}
GET /api/v1/stream/current Beta

Get information about the current broadcast segment.

GET /api/v1/token/burns Live

Get detailed token burn history and statistics.

The OINK FM Rust SDK provides a comprehensive interface for interacting with our platform. Built with performance and type safety in mind, it's the preferred way to integrate OINK FM into your Rust applications.

Core Client Implementation

Rust
use anchor_client::{
    solana_sdk::{
        commitment_config::CommitmentConfig,
        pubkey::Pubkey,
        signature::Signature,
        signer::Signer,
    },
    Client, Cluster,
};
use serde::{Deserialize, Serialize};
use std::rc::Rc;

#[derive(Debug, Clone)]
pub struct OinkFMClient {
    pub client: Client,
    pub program_id: Pubkey,
    pub station_account: Pubkey,
}

#[derive(Debug, Serialize, Deserialize)]
pub enum SubmissionType {
    Video {
        project_name: String,
        video_url: String,
        duration_seconds: u32,
    },
    Song {
        title: String,
        artist: String,
        requester: Option<String>,
    },
    Message {
        content: String,
        author: String,
        category: MessageCategory,
    },
}

#[derive(Debug, Serialize, Deserialize)]
pub enum MessageCategory {
    MarketAnalysis,
    Story,
    Shoutout,
    Question,
    Other,
}

impl OinkFMClient {
    /// Create a new OINK FM client
    pub async fn new(rpc_url: &str) -> Result<Self, ClientError> {
        let cluster = Cluster::Custom(rpc_url.to_string(), rpc_url.to_string());
        let client = Client::new_with_options(
            cluster,
            Rc::new(Keypair::new()), // Dummy keypair for read operations
            CommitmentConfig::processed(),
        );

        let program_id = "OINK_PROGRAM_ID_HERE".parse()?;
        let station_account = "STATION_ACCOUNT_HERE".parse()?;

        Ok(Self {
            client,
            program_id,
            station_account,
        })
    }

    /// Get current station statistics
    pub async fn get_station_stats(&self) -> Result<StationStats, ClientError> {
        let account_data = self
            .client
            .rpc()
            .get_account_data(&self.station_account)
            .await?;

        let station: OinkFMStation = OinkFMStation::try_deserialize(&mut account_data.as_slice())?;

        Ok(StationStats {
            total_burned: station.total_burned,
            broadcast_hours: station.broadcast_hours,
            current_listeners: self.get_listener_count().await?,
            ai_iterations: station.ai_learning_state.learning_iterations,
        })
    }

    /// Submit content to OINK FM
    pub async fn submit_content(
        &self,
        submission: SubmissionType,
        token_amount: u64,
        payer: &dyn Signer,
    ) -> Result<SubmissionResult, ClientError> {
        let cost = match &submission {
            SubmissionType::Video { .. } => 10_000,
            SubmissionType::Song { .. } => 100,
            SubmissionType::Message { .. } => 500,
        };

        if token_amount != cost {
            return Err(ClientError::InvalidTokenAmount { 
                expected: cost, 
                provided: token_amount 
            });
        }

        // Execute burn transaction
        let burn_signature = self.burn_tokens(payer, token_amount).await?;
        
        // Submit content metadata
        let submission_id = self.create_submission_record(submission, burn_signature).await?;

        Ok(SubmissionResult {
            id: submission_id,
            burn_signature,
            status: SubmissionStatus::PendingReview,
        })
    }

    /// Get AI sentiment analysis
    pub async fn get_ai_sentiment(&self) -> Result<AISentiment, ClientError> {
        let response = self
            .client
            .request_airdrop(&self.station_account, 0) // Dummy call to test connection
            .await;

        // In a real implementation, this would call the AI sentiment endpoint
        // For now, we'll return mock data
        Ok(AISentiment {
            overall_sentiment: 0.67,
            porky_sentiment: 0.72,
            perky_sentiment: 0.62,
            confidence: 0.89,
            last_updated: chrono::Utc::now(),
        })
    }

    /// Private helper methods
    async fn burn_tokens(
        &self,
        payer: &dyn Signer,
        amount: u64,
    ) -> Result<Signature, ClientError> {
        // Implementation for burning tokens
        // This would use the Solana token program to burn tokens
        todo!("Implement token burn logic")
    }

    async fn create_submission_record(
        &self,
        submission: SubmissionType,
        burn_sig: Signature,
    ) -> Result<String, ClientError> {
        // Implementation for creating submission record
        todo!("Implement submission record creation")
    }

    async fn get_listener_count(&self) -> Result<u32, ClientError> {
        // Mock implementation
        Ok(1337)
    }
}

Data Structures

Rust
#[derive(Debug, Serialize, Deserialize)]
pub struct StationStats {
    pub total_burned: u64,
    pub broadcast_hours: u64,
    pub current_listeners: u32,
    pub ai_iterations: u64,
}

#[derive(Debug, Serialize, Deserialize)]
pub struct SubmissionResult {
    pub id: String,
    pub burn_signature: Signature,
    pub status: SubmissionStatus,
}

#[derive(Debug, Serialize, Deserialize)]
pub enum SubmissionStatus {
    PendingReview,
    Approved,
    Scheduled,
    Broadcasted,
    Rejected,
}

#[derive(Debug, Serialize, Deserialize)]
pub struct AISentiment {
    pub overall_sentiment: f64, // -1.0 to 1.0
    pub porky_sentiment: f64,
    pub perky_sentiment: f64,
    pub confidence: f64,
    pub last_updated: chrono::DateTime<chrono::Utc>,
}

#[derive(Debug)]
pub enum ClientError {
    NetworkError(String),
    InvalidTokenAmount { expected: u64, provided: u64 },
    SerializationError(String),
    InvalidSignature,
    InsufficientFunds,
    RateLimitExceeded,
}

impl std::fmt::Display for ClientError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            ClientError::NetworkError(msg) => write!(f, "Network error: {}", msg),
            ClientError::InvalidTokenAmount { expected, provided } => {
                write!(f, "Invalid token amount: expected {}, got {}", expected, provided)
            }
            ClientError::SerializationError(msg) => write!(f, "Serialization error: {}", msg),
            ClientError::InvalidSignature => write!(f, "Invalid signature"),
            ClientError::InsufficientFunds => write!(f, "Insufficient funds"),
            ClientError::RateLimitExceeded => write!(f, "Rate limit exceeded"),
        }
    }
}

impl std::error::Error for ClientError {}

OINK FM implements a deflationary token model where content submissions burn $OINKFM tokens, creating scarcity and driving long-term value. Our burn algorithm ensures sustainable economics while incentivizing quality content creation.

Burn Mechanism Implementation

Rust
use anchor_lang::prelude::*;
use anchor_spl::{
    token::{Mint, Token, TokenAccount, Burn, burn},
};

#[program]
pub mod oinkfm_program {
    use super::*;

    /// Burn tokens for content submission
    pub fn burn_for_submission(
        ctx: Context<BurnForSubmission>,
        amount: u64,
        submission_type: SubmissionType,
    ) -> Result<()> {
        let required_amount = match submission_type {
            SubmissionType::Video => 10_000 * 10_u64.pow(9), // 10,000 OINKFM
            SubmissionType::Song => 100 * 10_u64.pow(9),     // 100 OINKFM
            SubmissionType::Message => 500 * 10_u64.pow(9),   // 500 OINKFM
        };

        require!(amount == required_amount, OinkFMError::InvalidBurnAmount);

        // Burn tokens
        let burn_ctx = CpiContext::new(
            ctx.accounts.token_program.to_account_info(),
            Burn {
                mint: ctx.accounts.mint.to_account_info(),
                from: ctx.accounts.user_token_account.to_account_info(),
                authority: ctx.accounts.user.to_account_info(),
            },
        );

        burn(burn_ctx, amount)?;

        // Update station stats
        let station = &mut ctx.accounts.station;
        station.total_burned = station.total_burned.checked_add(amount)
            .ok_or(OinkFMError::MathOverflow)?;
        
        station.total_submissions = station.total_submissions.checked_add(1)
            .ok_or(OinkFMError::MathOverflow)?;

        // Emit burn event
        emit!(TokenBurnEvent {
            amount,
            submission_type,
            user: ctx.accounts.user.key(),
            timestamp: Clock::get()?.unix_timestamp,
        });

        Ok(())
    }

    /// Calculate dynamic pricing based on demand
    pub fn calculate_dynamic_pricing(
        base_price: u64,
        recent_submissions: u32,
        time_window_hours: u32,
    ) -> u64 {
        let submissions_per_hour = recent_submissions as f64 / time_window_hours as f64;
        
        // Apply demand multiplier (exponential scaling)
        let demand_multiplier = if submissions_per_hour > 10.0 {
            1.0 + ((submissions_per_hour - 10.0) / 10.0).min(2.0)
        } else {
            1.0
        };

        (base_price as f64 * demand_multiplier) as u64
    }

    /// Update AI learning state with market data
    pub fn update_ai_learning(
        ctx: Context<UpdateAILearning>,
        market_data: MarketData,
    ) -> Result<()> {
        let station = &mut ctx.accounts.station;
        
        // Update Porky's analysis engine
        station.ai_learning_state.porky_sentiment = calculate_sentiment(
            &market_data,
            AIPersonality::Porky,
        );

        // Update Perky's analysis engine
        station.ai_learning_state.perky_sentiment = calculate_sentiment(
            &market_data,
            AIPersonality::Perky,
        );

        // Increment learning iterations
        station.ai_learning_state.learning_iterations = 
            station.ai_learning_state.learning_iterations.checked_add(1)
                .ok_or(OinkFMError::MathOverflow)?;

        // Store market data in knowledge base
        station.ai_learning_state.knowledge_base.push(KnowledgeNode {
            timestamp: Clock::get()?.unix_timestamp,
            data_type: DataType::MarketData,
            content: market_data.serialize()?,
            importance_score: calculate_importance(&market_data),
        });

        Ok(())
    }
}

#[derive(Accounts)]
pub struct BurnForSubmission<'info> {
    #[account(mut)]
    pub user: Signer<'info>,
    
    #[account(mut)]
    pub user_token_account: Account<'info, TokenAccount>,
    
    #[account(mut)]
    pub mint: Account<'info, Mint>,
    
    #[account(mut)]
    pub station: Account<'info, OinkFMStation>,
    
    pub token_program: Program<'info, Token>,
}

#[derive(AnchorSerialize, AnchorDeserialize, Clone)]
pub enum SubmissionType {
    Video,
    Song,
    Message,
}

#[event]
pub struct TokenBurnEvent {
    pub amount: u64,
    pub submission_type: SubmissionType,
    pub user: Pubkey,
    pub timestamp: i64,
}

#[error_code]
pub enum OinkFMError {
    #[msg("Invalid burn amount for submission type")]
    InvalidBurnAmount,
    #[msg("Mathematical overflow occurred")]
    MathOverflow,
    #[msg("AI learning state corrupted")]
    AIStateCorrupted,
}

Token Distribution Analysis

Rust
#[derive(Debug, Clone)]
pub struct TokenomicsCalculator {
    pub total_supply: u64,
    pub distribution: TokenDistribution,
}

#[derive(Debug, Clone)]
pub struct TokenDistribution {
    pub public_sale: u64,      // 50%
    pub holder_rewards: u64,   // 20.5%
    pub creator_rewards: u64,  // 12.5%
    pub liquidity_pool: u64,   // 10%
    pub team_allocation: u64,  // 7%
}

impl TokenomicsCalculator {
    pub fn new(total_supply: u64) -> Self {
        let distribution = TokenDistribution {
            public_sale: (total_supply as f64 * 0.50) as u64,
            holder_rewards: (total_supply as f64 * 0.205) as u64,
            creator_rewards: (total_supply as f64 * 0.125) as u64,
            liquidity_pool: (total_supply as f64 * 0.10) as u64,
            team_allocation: (total_supply as f64 * 0.07) as u64,
        };

        Self {
            total_supply,
            distribution,
        }
    }

    /// Calculate burn rate impact on token economics
    pub fn calculate_burn_impact(
        &self,
        burned_amount: u64,
        time_period_days: u32,
    ) -> BurnImpactAnalysis {
        let burn_rate_daily = burned_amount as f64 / time_period_days as f64;
        let annual_burn_rate = burn_rate_daily * 365.0;
        let burn_percentage = (burned_amount as f64 / self.total_supply as f64) * 100.0;
        
        let deflationary_pressure = if annual_burn_rate > 0.0 {
            (annual_burn_rate / self.total_supply as f64) * 100.0
        } else {
            0.0
        };

        BurnImpactAnalysis {
            burned_amount,
            burn_percentage,
            daily_burn_rate: burn_rate_daily,
            annual_burn_rate,
            deflationary_pressure,
            remaining_supply: self.total_supply - burned_amount,
        }
    }

    /// Project future supply given current burn rate
    pub fn project_future_supply(
        &self,
        current_burned: u64,
        daily_burn_rate: f64,
        days_ahead: u32,
    ) -> SupplyProjection {
        let future_burned = current_burned + (daily_burn_rate * days_ahead as f64) as u64;
        let future_supply = self.total_supply.saturating_sub(future_burned);
        
        SupplyProjection {
            days_ahead,
            projected_burned: future_burned,
            projected_supply: future_supply,
            scarcity_multiplier: self.total_supply as f64 / future_supply as f64,
        }
    }
}

#[derive(Debug)]
pub struct BurnImpactAnalysis {
    pub burned_amount: u64,
    pub burn_percentage: f64,
    pub daily_burn_rate: f64,
    pub annual_burn_rate: f64,
    pub deflationary_pressure: f64,
    pub remaining_supply: u64,
}

#[derive(Debug)]
pub struct SupplyProjection {
    pub days_ahead: u32,
    pub projected_burned: u64,
    pub projected_supply: u64,
    pub scarcity_multiplier: f64,
}

Porky and Perky represent advanced AI personalities with distinct analytical approaches. Their learning algorithms process market data, user interactions, and blockchain events to provide increasingly sophisticated crypto intelligence.

AI Personality Engine

Rust
use serde::{Deserialize, Serialize};
use std::collections::HashMap;

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AIPersonalityEngine {
    pub porky: AIPersonality,
    pub perky: AIPersonality,
    pub knowledge_base: SharedKnowledgeBase,
    pub interaction_history: Vec<Interaction>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AIPersonality {
    pub name: String,
    pub personality_traits: PersonalityTraits,
    pub analysis_engine: AnalysisEngine,
    pub learning_parameters: LearningParameters,
    pub sentiment_bias: f64,
    pub confidence_threshold: f64,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PersonalityTraits {
    pub skepticism: f64,       // 0.0-1.0: How skeptical of claims
    pub optimism: f64,         // 0.0-1.0: Market outlook bias
    pub aggression: f64,       // 0.0-1.0: How forceful in opinions
    pub conspiracy_tendency: f64, // 0.0-1.0: Tendency to see manipulation
    pub technical_focus: f64,  // 0.0-1.0: TA vs fundamental analysis
}

impl AIPersonalityEngine {
    pub fn new() -> Self {
        let porky = AIPersonality {
            name: "Porky".to_string(),
            personality_traits: PersonalityTraits {
                skepticism: 0.8,           // Highly skeptical
                optimism: 0.3,             // Generally pessimistic
                aggression: 0.9,           // Very forceful
                conspiracy_tendency: 0.9,  // High conspiracy detection
                technical_focus: 0.4,      // More fundamental analysis
            },
            analysis_engine: AnalysisEngine::new_porky(),
            learning_parameters: LearningParameters::conservative(),
            sentiment_bias: -0.2, // Slightly bearish bias
            confidence_threshold: 0.7,
        };

        let perky = AIPersonality {
            name: "Perky".to_string(),
            personality_traits: PersonalityTraits {
                skepticism: 0.6,           // Moderately skeptical
                optimism: 0.7,             // Generally optimistic
                aggression: 0.5,           // Balanced approach
                conspiracy_tendency: 0.7,  // Moderate conspiracy detection
                technical_focus: 0.8,      // Heavy technical analysis
            },
            analysis_engine: AnalysisEngine::new_perky(),
            learning_parameters: LearningParameters::aggressive(),
            sentiment_bias: 0.1, // Slightly bullish bias
            confidence_threshold: 0.6,
        };

        Self {
            porky,
            perky,
            knowledge_base: SharedKnowledgeBase::new(),
            interaction_history: Vec::new(),
        }
    }

    /// Process market data and generate analysis from both personalities
    pub fn analyze_market_data(
        &mut self,
        market_data: &MarketData,
    ) -> DualAnalysis {
        // Porky's analysis (skeptical, conspiracy-focused)
        let porky_analysis = self.porky.analyze(market_data, &self.knowledge_base);
        
        // Perky's analysis (technical, optimistic)
        let perky_analysis = self.perky.analyze(market_data, &self.knowledge_base);

        // Update shared knowledge base
        self.knowledge_base.add_market_data(market_data);

        // Generate combined insight
        let consensus = self.find_consensus(&porky_analysis, &perky_analysis);

        DualAnalysis {
            porky: porky_analysis,
            perky: perky_analysis,
            consensus,
            timestamp: chrono::Utc::now(),
        }
    }

    /// Generate dialogue between personalities
    pub fn generate_dialogue(
        &mut self,
        topic: &DialogueTopic,
    ) -> Vec<DialogueExchange> {
        let mut dialogue = Vec::new();
        
        // Porky opens with skeptical take
        let porky_opening = self.porky.generate_statement(topic, &self.knowledge_base);
        dialogue.push(DialogueExchange {
            speaker: "Porky".to_string(),
            content: porky_opening,
            sentiment: self.porky.calculate_sentiment(topic),
            timestamp: chrono::Utc::now(),
        });

        // Perky responds with technical perspective
        let perky_response = self.perky.respond_to(&dialogue[0], topic, &self.knowledge_base);
        dialogue.push(DialogueExchange {
            speaker: "Perky".to_string(),
            content: perky_response,
            sentiment: self.perky.calculate_sentiment(topic),
            timestamp: chrono::Utc::now(),
        });

        // Continue dialogue for 3-5 exchanges
        for i in 0..3 {
            if i % 2 == 0 {
                // Porky's turn
                let response = self.porky.continue_dialogue(&dialogue, topic);
                dialogue.push(DialogueExchange {
                    speaker: "Porky".to_string(),
                    content: response,
                    sentiment: self.porky.calculate_sentiment(topic),
                    timestamp: chrono::Utc::now(),
                });
            } else {
                // Perky's turn
                let response = self.perky.continue_dialogue(&dialogue, topic);
                dialogue.push(DialogueExchange {
                    speaker: "Perky".to_string(),
                    content: response,
                    sentiment: self.perky.calculate_sentiment(topic),
                    timestamp: chrono::Utc::now(),
                });
            }
        }

        // Store dialogue in interaction history
        self.interaction_history.push(Interaction {
            interaction_type: InteractionType::Dialogue,
            topic: topic.clone(),
            exchanges: dialogue.clone(),
            timestamp: chrono::Utc::now(),
        });

        dialogue
    }

    /// Learn from user feedback and market outcomes
    pub fn learn_from_feedback(
        &mut self,
        feedback: &UserFeedback,
        market_outcome: &MarketOutcome,
    ) {
        // Update Porky's learning parameters based on accuracy
        if feedback.porky_accuracy > 0.7 {
            self.porky.learning_parameters.learning_rate *= 1.1;
        } else {
            self.porky.learning_parameters.learning_rate *= 0.9;
        }

        // Update Perky's learning parameters
        if feedback.perky_accuracy > 0.7 {
            self.perky.learning_parameters.learning_rate *= 1.1;
        } else {
            self.perky.learning_parameters.learning_rate *= 0.9;
        }

        // Update personality traits based on market outcomes
        self.adjust_personality_traits(market_outcome);
        
        // Add to knowledge base
        self.knowledge_base.add_feedback(feedback, market_outcome);
    }

    fn find_consensus(
        &self,
        porky: &Analysis,
        perky: &Analysis,
    ) -> ConsensusAnalysis {
        let avg_sentiment = (porky.sentiment + perky.sentiment) / 2.0;
        let confidence_spread = (porky.confidence - perky.confidence).abs();
        
        let agreement_level = if confidence_spread < 0.2 {
            AgreementLevel::HighAgreement
        } else if confidence_spread < 0.5 {
            AgreementLevel::ModerateAgreement
        } else {
            AgreementLevel::Disagreement
        };

        ConsensusAnalysis {
            combined_sentiment: avg_sentiment,
            agreement_level,
            key_points: self.extract_common_points(porky, perky),
            divergent_views: self.extract_divergent_views(porky, perky),
        }
    }

    fn adjust_personality_traits(&mut self, outcome: &MarketOutcome) {
        // If market crashed and Porky was more bearish, increase his confidence
        if outcome.market_change < -0.1 && self.porky.sentiment_bias < 0.0 {
            self.porky.personality_traits.skepticism = 
                (self.porky.personality_traits.skepticism + 0.05).min(1.0);
        }

        // If market pumped and Perky was bullish, increase his optimism
        if outcome.market_change > 0.1 && self.perky.sentiment_bias > 0.0 {
            self.perky.personality_traits.optimism = 
                (self.perky.personality_traits.optimism + 0.05).min(1.0);
        }
    }
}

Learning Algorithm Implementation

Rust
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct LearningParameters {
    pub learning_rate: f64,
    pub memory_decay: f64,
    pub pattern_recognition_threshold: f64,
    pub adaptation_speed: f64,
}

impl LearningParameters {
    pub fn conservative() -> Self {
        Self {
            learning_rate: 0.01,
            memory_decay: 0.995,
            pattern_recognition_threshold: 0.8,
            adaptation_speed: 0.5,
        }
    }

    pub fn aggressive() -> Self {
        Self {
            learning_rate: 0.05,
            memory_decay: 0.99,
            pattern_recognition_threshold: 0.6,
            adaptation_speed: 1.2,
        }
    }
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SharedKnowledgeBase {
    pub market_patterns: HashMap<String, PatternData>,
    pub token_histories: HashMap<String, TokenHistory>,
    pub sentiment_correlations: Vec<SentimentCorrelation>,
    pub manipulation_indicators: Vec<ManipulationPattern>,
    pub learning_iterations: u64,
}

impl SharedKnowledgeBase {
    pub fn new() -> Self {
        Self {
            market_patterns: HashMap::new(),
            token_histories: HashMap::new(),
            sentiment_correlations: Vec::new(),
            manipulation_indicators: Vec::new(),
            learning_iterations: 0,
        }
    }

    pub fn add_market_data(&mut self, data: &MarketData) {
        // Update token history
        let history = self
            .token_histories
            .entry(data.symbol.clone())
            .or_insert_with(TokenHistory::new);
        
        history.add_data_point(data);

        // Detect patterns
        if let Some(pattern) = self.detect_pattern(data, history) {
            self.market_patterns.insert(pattern.id.clone(), pattern);
        }

        // Check for manipulation signals
        if let Some(manipulation) = self.detect_manipulation(data, history) {
            self.manipulation_indicators.push(manipulation);
        }

        self.learning_iterations += 1;
    }

    fn detect_pattern(
        &self,
        current: &MarketData,
        history: &TokenHistory,
    ) -> Option<PatternData> {
        // Implement pattern detection algorithms
        // Look for common crypto patterns: pump & dump, accumulation, etc.
        
        if history.data_points.len() < 10 {
            return None;
        }

        let recent_volume = history.recent_average_volume(5);
        let historical_volume = history.historical_average_volume();

        // Detect pump pattern
        if current.volume > historical_volume * 5.0 
            && current.price_change > 0.2 {
            return Some(PatternData {
                id: format!("pump_{}", current.timestamp),
                pattern_type: PatternType::Pump,
                confidence: 0.8,
                timestamp: current.timestamp,
                metadata: format!("Volume spike: {}x normal", 
                    current.volume / historical_volume),
            });
        }

        None
    }

    fn detect_manipulation(
        &self,
        current: &MarketData,
        history: &TokenHistory,
    ) -> Option<ManipulationPattern> {
        // Porky's specialty: detecting market manipulation
        
        // Look for wash trading patterns
        if self.is_wash_trading(current, history) {
            return Some(ManipulationPattern {
                pattern_type: ManipulationType::WashTrading,
                confidence: 0.75,
                evidence: vec![
                    "Repetitive volume patterns".to_string(),
                    "Unusual bid-ask spreads".to_string(),
                ],
                timestamp: current.timestamp,
            });
        }

        // Look for coordinated pump signals
        if self.is_coordinated_pump(current, history) {
            return Some(ManipulationPattern {
                pattern_type: ManipulationType::CoordinatedPump,
                confidence: 0.85,
                evidence: vec![
                    "Sudden volume spike".to_string(),
                    "Social media coordination signals".to_string(),
                ],
                timestamp: current.timestamp,
            });
        }

        None
    }

    fn is_wash_trading(&self, current: &MarketData, history: &TokenHistory) -> bool {
        // Simplified wash trading detection
        // In reality, this would be much more sophisticated
        let volume_variance = history.volume_variance();
        let price_volatility = history.price_volatility();
        
        // High volume with low price movement suggests wash trading
        current.volume > history.average_volume() * 3.0 
            && current.price_change.abs() < 0.02
            && volume_variance > 2.0
    }

    fn is_coordinated_pump(&self, current: &MarketData, history: &TokenHistory) -> bool {
        // Look for pump characteristics
        let volume_spike = current.volume / history.average_volume();
        let price_spike = current.price_change;
        
        volume_spike > 10.0 && price_spike > 0.5 && current.market_cap < 10_000_000.0
    }
}

Response Generation System

Rust
#[derive(Debug, Clone)]
pub struct ResponseGenerator {
    pub porky_templates: Vec<ResponseTemplate>,
    pub perky_templates: Vec<ResponseTemplate>,
    pub context_window: usize,
}

#[derive(Debug, Clone)]
pub struct ResponseTemplate {
    pub trigger_conditions: Vec<TriggerCondition>,
    pub response_patterns: Vec<String>,
    pub personality_weight: f64,
    pub context_sensitivity: f64,
}

impl ResponseGenerator {
    pub fn new() -> Self {
        let porky_templates = vec![
            ResponseTemplate {
                trigger_conditions: vec![
                    TriggerCondition::MarketPump,
                    TriggerCondition::HighVolume,
                ],
                response_patterns: vec![
                    "Hold up, folks! This pump looks suspicious...".to_string(),
                    "I'm seeing all the classic signs of manipulation here...".to_string(),
                    "Don't fall for this obvious pump and dump scheme!".to_string(),
                ],
                personality_weight: 0.9, // High weight for Porky's skepticism
                context_sensitivity: 0.8,
            },
            ResponseTemplate {
                trigger_conditions: vec![
                    TriggerCondition::MarketCrash,
                    TriggerCondition::HighFear,
                ],
                response_patterns: vec![
                    "I told you this was coming! The whales are dumping...".to_string(),
                    "This crash was orchestrated. Follow the whale wallets!".to_string(),
                    "Retail gets rekt again while insiders profit...".to_string(),
                ],
                personality_weight: 0.95,
                context_sensitivity: 0.7,
            },
        ];

        let perky_templates = vec![
            ResponseTemplate {
                trigger_conditions: vec![
                    TriggerCondition::TechnicalBreakout,
                    TriggerCondition::VolumeConfirmation,
                ],
                response_patterns: vec![
                    "Now this is a clean breakout! RSI confirming...".to_string(),
                    "The technicals are screaming bullish divergence!".to_string(),
                    "Volume profile supports this move higher...".to_string(),
                ],
                personality_weight: 0.85,
                context_sensitivity: 0.9,
            },
            ResponseTemplate {
                trigger_conditions: vec![
                    TriggerCondition::BearishDivergence,
                    TriggerCondition::WeakVolume,
                ],
                response_patterns: vec![
                    "Hmm, seeing bearish divergence on the indicators...".to_string(),
                    "Volume isn't confirming this move. Could be a fake-out...".to_string(),
                    "The charts are warning us - momentum is weakening...".to_string(),
                ],
                personality_weight: 0.7,
                context_sensitivity: 0.85,
            },
        ];

        Self {
            porky_templates,
            perky_templates,
            context_window: 10,
        }
    }

    pub fn generate_porky_response(
        &self,
        market_data: &MarketData,
        context: &[DialogueExchange],
        knowledge_base: &SharedKnowledgeBase,
    ) -> String {
        // Find matching templates based on current conditions
        let conditions = self.analyze_conditions(market_data, knowledge_base);
        let matching_templates = self.find_matching_templates(&self.porky_templates, &conditions);

        if matching_templates.is_empty() {
            return self.generate_fallback_porky_response(market_data);
        }

        // Select best template based on context and personality weight
        let best_template = self.select_best_template(&matching_templates, context);
        
        // Generate response with dynamic content injection
        self.inject_dynamic_content(
            &best_template.response_patterns[0], 
            market_data, 
            knowledge_base
        )
    }

    pub fn generate_perky_response(
        &self,
        market_data: &MarketData,
        context: &[DialogueExchange],
        knowledge_base: &SharedKnowledgeBase,
    ) -> String {
        let conditions = self.analyze_conditions(market_data, knowledge_base);
        let matching_templates = self.find_matching_templates(&self.perky_templates, &conditions);

        if matching_templates.is_empty() {
            return self.generate_fallback_perky_response(market_data);
        }

        let best_template = self.select_best_template(&matching_templates, context);
        
        self.inject_dynamic_content(
            &best_template.response_patterns[0], 
            market_data, 
            knowledge_base
        )
    }

    fn inject_dynamic_content(
        &self,
        template: &str,
        market_data: &MarketData,
        knowledge_base: &SharedKnowledgeBase,
    ) -> String {
        let mut response = template.to_string();

        // Inject real market data
        if market_data.price_change > 0.0 {
            response = response.replace("{PRICE_MOVEMENT}", 
                &format!("up {:.2}%", market_data.price_change * 100.0));
        } else {
            response = response.replace("{PRICE_MOVEMENT}", 
                &format!("down {:.2}%", market_data.price_change.abs() * 100.0));
        }

        // Inject volume data
        if let Some(token_history) = knowledge_base.token_histories.get(&market_data.symbol) {
            let volume_multiple = market_data.volume / token_history.average_volume();
            if volume_multiple > 2.0 {
                response = response.replace("{VOLUME_ANALYSIS}", 
                    &format!("Volume is {}x normal!", volume_multiple as u32));
            }
        }

        // Add timestamp context
        response = response.replace("{TOKEN}", &market_data.symbol);

        response
    }

    fn analyze_conditions(
        &self,
        market_data: &MarketData,
        knowledge_base: &SharedKnowledgeBase,
    ) -> Vec<TriggerCondition> {
        let mut conditions = Vec::new();

        // Analyze market conditions
        if market_data.price_change > 0.2 {
            conditions.push(TriggerCondition::MarketPump);
        } else if market_data.price_change < -0.15 {
            conditions.push(TriggerCondition::MarketCrash);
        }

        // Check volume conditions
        if let Some(history) = knowledge_base.token_histories.get(&market_data.symbol) {
            if market_data.volume > history.average_volume() * 3.0 {
                conditions.push(TriggerCondition::HighVolume);
            }
        }

        // Check for manipulation patterns
        if knowledge_base.manipulation_indicators
            .iter()
            .any(|m| m.timestamp > market_data.timestamp - 3600) {
            conditions.push(TriggerCondition::ManipulationDetected);
        }

        conditions
    }
}

// Supporting data structures
#[derive(Debug, Clone, PartialEq)]
pub enum TriggerCondition {
    MarketPump,
    MarketCrash,
    HighVolume,
    WeakVolume,
    TechnicalBreakout,
    BearishDivergence,
    VolumeConfirmation,
    HighFear,
    ManipulationDetected,
}

#[derive(Debug, Clone)]
pub struct DialogueExchange {
    pub speaker: String,
    pub content: String,
    pub sentiment: f64,
    pub timestamp: chrono::DateTime<chrono::Utc>,
}