Technical documentation for OINK FM's AI-powered crypto radio platform
OINK FM is a revolutionary AI-powered crypto radio station broadcasting 24/7 on the Solana blockchain. Our platform combines advanced AI personalities with real-time market analysis, creating an unfiltered source of crypto intelligence that learns and evolves with the market.
// OINK FM System Architecture
use solana_program::{
account_info::AccountInfo,
entrypoint,
entrypoint::ProgramResult,
msg,
pubkey::Pubkey,
};
#[derive(Debug)]
pub struct OinkFMStation {
pub authority: Pubkey,
pub token_mint: Pubkey,
pub burn_wallet: Pubkey,
pub total_burned: u64,
pub broadcast_hours: u64,
pub ai_learning_state: AIState,
}
#[derive(Debug)]
pub struct AIState {
pub porky_knowledge_base: Vec<KnowledgeNode>,
pub perky_analysis_engine: AnalysisEngine,
pub market_sentiment: f64,
pub learning_iterations: u64,
}
# Add to your Cargo.toml
[dependencies]
oinkfm-sdk = "0.1.0"
solana-client = "1.17"
tokio = { version = "1.0", features = ["full"] }
anchor-client = "0.29.0"
use oinkfm_sdk::{OinkFMClient, SubmissionType};
use solana_client::RpcClient;
use std::env;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Initialize OINK FM client
let rpc_url = env::var("SOLANA_RPC_URL")
.unwrap_or_else(|_| "https://api.mainnet-beta.solana.com".to_string());
let client = OinkFMClient::new(&rpc_url).await?;
// Get current station stats
let stats = client.get_station_stats().await?;
println!("Total tokens burned: {}", stats.total_burned);
println!("Hours broadcasted: {}", stats.broadcast_hours);
// Submit content to OINK FM
let submission = client
.submit_content(
SubmissionType::Message {
content: "Hello from Rust!".to_string(),
author: "RustDev".to_string(),
},
500, // 500 OINKFM tokens
)
.await?;
println!("Submission ID: {}", submission.id);
Ok(())
}
Get current station statistics including burned tokens and broadcast hours.
{
"total_burned": 1250000,
"broadcast_hours": 8760,
"market_cap": 2500000,
"current_listeners": 1337,
"ai_learning_iterations": 450782
}
Submit content to OINK FM (requires token payment).
Parameter | Type | Required | Description |
---|---|---|---|
type | string | ✅ | video, song, or message |
content | object | ✅ | Content data based on submission type |
payment_signature | string | ✅ | Solana transaction signature for token payment |
string | ✅ | Contact email for submission updates |
{
"type": "message",
"content": {
"text": "OINK FM is revolutionizing crypto media!",
"author": "CryptoPig",
"category": "market_analysis"
},
"payment_signature": "3Ky7ZX9...",
"email": "user@example.com"
}
Get current AI market sentiment analysis from Porky & Perky.
{
"overall_sentiment": 0.67,
"porky_analysis": {
"sentiment": 0.72,
"confidence": 0.89,
"key_indicators": ["bullish_momentum", "volume_increase"]
},
"perky_analysis": {
"sentiment": 0.62,
"confidence": 0.94,
"concerns": ["regulatory_uncertainty", "market_volatility"]
},
"last_updated": "2025-07-01T12:00:00Z"
}
Get information about the current broadcast segment.
Get detailed token burn history and statistics.
The OINK FM Rust SDK provides a comprehensive interface for interacting with our platform. Built with performance and type safety in mind, it's the preferred way to integrate OINK FM into your Rust applications.
use anchor_client::{
solana_sdk::{
commitment_config::CommitmentConfig,
pubkey::Pubkey,
signature::Signature,
signer::Signer,
},
Client, Cluster,
};
use serde::{Deserialize, Serialize};
use std::rc::Rc;
#[derive(Debug, Clone)]
pub struct OinkFMClient {
pub client: Client,
pub program_id: Pubkey,
pub station_account: Pubkey,
}
#[derive(Debug, Serialize, Deserialize)]
pub enum SubmissionType {
Video {
project_name: String,
video_url: String,
duration_seconds: u32,
},
Song {
title: String,
artist: String,
requester: Option<String>,
},
Message {
content: String,
author: String,
category: MessageCategory,
},
}
#[derive(Debug, Serialize, Deserialize)]
pub enum MessageCategory {
MarketAnalysis,
Story,
Shoutout,
Question,
Other,
}
impl OinkFMClient {
/// Create a new OINK FM client
pub async fn new(rpc_url: &str) -> Result<Self, ClientError> {
let cluster = Cluster::Custom(rpc_url.to_string(), rpc_url.to_string());
let client = Client::new_with_options(
cluster,
Rc::new(Keypair::new()), // Dummy keypair for read operations
CommitmentConfig::processed(),
);
let program_id = "OINK_PROGRAM_ID_HERE".parse()?;
let station_account = "STATION_ACCOUNT_HERE".parse()?;
Ok(Self {
client,
program_id,
station_account,
})
}
/// Get current station statistics
pub async fn get_station_stats(&self) -> Result<StationStats, ClientError> {
let account_data = self
.client
.rpc()
.get_account_data(&self.station_account)
.await?;
let station: OinkFMStation = OinkFMStation::try_deserialize(&mut account_data.as_slice())?;
Ok(StationStats {
total_burned: station.total_burned,
broadcast_hours: station.broadcast_hours,
current_listeners: self.get_listener_count().await?,
ai_iterations: station.ai_learning_state.learning_iterations,
})
}
/// Submit content to OINK FM
pub async fn submit_content(
&self,
submission: SubmissionType,
token_amount: u64,
payer: &dyn Signer,
) -> Result<SubmissionResult, ClientError> {
let cost = match &submission {
SubmissionType::Video { .. } => 10_000,
SubmissionType::Song { .. } => 100,
SubmissionType::Message { .. } => 500,
};
if token_amount != cost {
return Err(ClientError::InvalidTokenAmount {
expected: cost,
provided: token_amount
});
}
// Execute burn transaction
let burn_signature = self.burn_tokens(payer, token_amount).await?;
// Submit content metadata
let submission_id = self.create_submission_record(submission, burn_signature).await?;
Ok(SubmissionResult {
id: submission_id,
burn_signature,
status: SubmissionStatus::PendingReview,
})
}
/// Get AI sentiment analysis
pub async fn get_ai_sentiment(&self) -> Result<AISentiment, ClientError> {
let response = self
.client
.request_airdrop(&self.station_account, 0) // Dummy call to test connection
.await;
// In a real implementation, this would call the AI sentiment endpoint
// For now, we'll return mock data
Ok(AISentiment {
overall_sentiment: 0.67,
porky_sentiment: 0.72,
perky_sentiment: 0.62,
confidence: 0.89,
last_updated: chrono::Utc::now(),
})
}
/// Private helper methods
async fn burn_tokens(
&self,
payer: &dyn Signer,
amount: u64,
) -> Result<Signature, ClientError> {
// Implementation for burning tokens
// This would use the Solana token program to burn tokens
todo!("Implement token burn logic")
}
async fn create_submission_record(
&self,
submission: SubmissionType,
burn_sig: Signature,
) -> Result<String, ClientError> {
// Implementation for creating submission record
todo!("Implement submission record creation")
}
async fn get_listener_count(&self) -> Result<u32, ClientError> {
// Mock implementation
Ok(1337)
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct StationStats {
pub total_burned: u64,
pub broadcast_hours: u64,
pub current_listeners: u32,
pub ai_iterations: u64,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct SubmissionResult {
pub id: String,
pub burn_signature: Signature,
pub status: SubmissionStatus,
}
#[derive(Debug, Serialize, Deserialize)]
pub enum SubmissionStatus {
PendingReview,
Approved,
Scheduled,
Broadcasted,
Rejected,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct AISentiment {
pub overall_sentiment: f64, // -1.0 to 1.0
pub porky_sentiment: f64,
pub perky_sentiment: f64,
pub confidence: f64,
pub last_updated: chrono::DateTime<chrono::Utc>,
}
#[derive(Debug)]
pub enum ClientError {
NetworkError(String),
InvalidTokenAmount { expected: u64, provided: u64 },
SerializationError(String),
InvalidSignature,
InsufficientFunds,
RateLimitExceeded,
}
impl std::fmt::Display for ClientError {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
ClientError::NetworkError(msg) => write!(f, "Network error: {}", msg),
ClientError::InvalidTokenAmount { expected, provided } => {
write!(f, "Invalid token amount: expected {}, got {}", expected, provided)
}
ClientError::SerializationError(msg) => write!(f, "Serialization error: {}", msg),
ClientError::InvalidSignature => write!(f, "Invalid signature"),
ClientError::InsufficientFunds => write!(f, "Insufficient funds"),
ClientError::RateLimitExceeded => write!(f, "Rate limit exceeded"),
}
}
}
impl std::error::Error for ClientError {}
OINK FM implements a deflationary token model where content submissions burn $OINKFM tokens, creating scarcity and driving long-term value. Our burn algorithm ensures sustainable economics while incentivizing quality content creation.
use anchor_lang::prelude::*;
use anchor_spl::{
token::{Mint, Token, TokenAccount, Burn, burn},
};
#[program]
pub mod oinkfm_program {
use super::*;
/// Burn tokens for content submission
pub fn burn_for_submission(
ctx: Context<BurnForSubmission>,
amount: u64,
submission_type: SubmissionType,
) -> Result<()> {
let required_amount = match submission_type {
SubmissionType::Video => 10_000 * 10_u64.pow(9), // 10,000 OINKFM
SubmissionType::Song => 100 * 10_u64.pow(9), // 100 OINKFM
SubmissionType::Message => 500 * 10_u64.pow(9), // 500 OINKFM
};
require!(amount == required_amount, OinkFMError::InvalidBurnAmount);
// Burn tokens
let burn_ctx = CpiContext::new(
ctx.accounts.token_program.to_account_info(),
Burn {
mint: ctx.accounts.mint.to_account_info(),
from: ctx.accounts.user_token_account.to_account_info(),
authority: ctx.accounts.user.to_account_info(),
},
);
burn(burn_ctx, amount)?;
// Update station stats
let station = &mut ctx.accounts.station;
station.total_burned = station.total_burned.checked_add(amount)
.ok_or(OinkFMError::MathOverflow)?;
station.total_submissions = station.total_submissions.checked_add(1)
.ok_or(OinkFMError::MathOverflow)?;
// Emit burn event
emit!(TokenBurnEvent {
amount,
submission_type,
user: ctx.accounts.user.key(),
timestamp: Clock::get()?.unix_timestamp,
});
Ok(())
}
/// Calculate dynamic pricing based on demand
pub fn calculate_dynamic_pricing(
base_price: u64,
recent_submissions: u32,
time_window_hours: u32,
) -> u64 {
let submissions_per_hour = recent_submissions as f64 / time_window_hours as f64;
// Apply demand multiplier (exponential scaling)
let demand_multiplier = if submissions_per_hour > 10.0 {
1.0 + ((submissions_per_hour - 10.0) / 10.0).min(2.0)
} else {
1.0
};
(base_price as f64 * demand_multiplier) as u64
}
/// Update AI learning state with market data
pub fn update_ai_learning(
ctx: Context<UpdateAILearning>,
market_data: MarketData,
) -> Result<()> {
let station = &mut ctx.accounts.station;
// Update Porky's analysis engine
station.ai_learning_state.porky_sentiment = calculate_sentiment(
&market_data,
AIPersonality::Porky,
);
// Update Perky's analysis engine
station.ai_learning_state.perky_sentiment = calculate_sentiment(
&market_data,
AIPersonality::Perky,
);
// Increment learning iterations
station.ai_learning_state.learning_iterations =
station.ai_learning_state.learning_iterations.checked_add(1)
.ok_or(OinkFMError::MathOverflow)?;
// Store market data in knowledge base
station.ai_learning_state.knowledge_base.push(KnowledgeNode {
timestamp: Clock::get()?.unix_timestamp,
data_type: DataType::MarketData,
content: market_data.serialize()?,
importance_score: calculate_importance(&market_data),
});
Ok(())
}
}
#[derive(Accounts)]
pub struct BurnForSubmission<'info> {
#[account(mut)]
pub user: Signer<'info>,
#[account(mut)]
pub user_token_account: Account<'info, TokenAccount>,
#[account(mut)]
pub mint: Account<'info, Mint>,
#[account(mut)]
pub station: Account<'info, OinkFMStation>,
pub token_program: Program<'info, Token>,
}
#[derive(AnchorSerialize, AnchorDeserialize, Clone)]
pub enum SubmissionType {
Video,
Song,
Message,
}
#[event]
pub struct TokenBurnEvent {
pub amount: u64,
pub submission_type: SubmissionType,
pub user: Pubkey,
pub timestamp: i64,
}
#[error_code]
pub enum OinkFMError {
#[msg("Invalid burn amount for submission type")]
InvalidBurnAmount,
#[msg("Mathematical overflow occurred")]
MathOverflow,
#[msg("AI learning state corrupted")]
AIStateCorrupted,
}
#[derive(Debug, Clone)]
pub struct TokenomicsCalculator {
pub total_supply: u64,
pub distribution: TokenDistribution,
}
#[derive(Debug, Clone)]
pub struct TokenDistribution {
pub public_sale: u64, // 50%
pub holder_rewards: u64, // 20.5%
pub creator_rewards: u64, // 12.5%
pub liquidity_pool: u64, // 10%
pub team_allocation: u64, // 7%
}
impl TokenomicsCalculator {
pub fn new(total_supply: u64) -> Self {
let distribution = TokenDistribution {
public_sale: (total_supply as f64 * 0.50) as u64,
holder_rewards: (total_supply as f64 * 0.205) as u64,
creator_rewards: (total_supply as f64 * 0.125) as u64,
liquidity_pool: (total_supply as f64 * 0.10) as u64,
team_allocation: (total_supply as f64 * 0.07) as u64,
};
Self {
total_supply,
distribution,
}
}
/// Calculate burn rate impact on token economics
pub fn calculate_burn_impact(
&self,
burned_amount: u64,
time_period_days: u32,
) -> BurnImpactAnalysis {
let burn_rate_daily = burned_amount as f64 / time_period_days as f64;
let annual_burn_rate = burn_rate_daily * 365.0;
let burn_percentage = (burned_amount as f64 / self.total_supply as f64) * 100.0;
let deflationary_pressure = if annual_burn_rate > 0.0 {
(annual_burn_rate / self.total_supply as f64) * 100.0
} else {
0.0
};
BurnImpactAnalysis {
burned_amount,
burn_percentage,
daily_burn_rate: burn_rate_daily,
annual_burn_rate,
deflationary_pressure,
remaining_supply: self.total_supply - burned_amount,
}
}
/// Project future supply given current burn rate
pub fn project_future_supply(
&self,
current_burned: u64,
daily_burn_rate: f64,
days_ahead: u32,
) -> SupplyProjection {
let future_burned = current_burned + (daily_burn_rate * days_ahead as f64) as u64;
let future_supply = self.total_supply.saturating_sub(future_burned);
SupplyProjection {
days_ahead,
projected_burned: future_burned,
projected_supply: future_supply,
scarcity_multiplier: self.total_supply as f64 / future_supply as f64,
}
}
}
#[derive(Debug)]
pub struct BurnImpactAnalysis {
pub burned_amount: u64,
pub burn_percentage: f64,
pub daily_burn_rate: f64,
pub annual_burn_rate: f64,
pub deflationary_pressure: f64,
pub remaining_supply: u64,
}
#[derive(Debug)]
pub struct SupplyProjection {
pub days_ahead: u32,
pub projected_burned: u64,
pub projected_supply: u64,
pub scarcity_multiplier: f64,
}
Porky and Perky represent advanced AI personalities with distinct analytical approaches. Their learning algorithms process market data, user interactions, and blockchain events to provide increasingly sophisticated crypto intelligence.
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AIPersonalityEngine {
pub porky: AIPersonality,
pub perky: AIPersonality,
pub knowledge_base: SharedKnowledgeBase,
pub interaction_history: Vec<Interaction>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AIPersonality {
pub name: String,
pub personality_traits: PersonalityTraits,
pub analysis_engine: AnalysisEngine,
pub learning_parameters: LearningParameters,
pub sentiment_bias: f64,
pub confidence_threshold: f64,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PersonalityTraits {
pub skepticism: f64, // 0.0-1.0: How skeptical of claims
pub optimism: f64, // 0.0-1.0: Market outlook bias
pub aggression: f64, // 0.0-1.0: How forceful in opinions
pub conspiracy_tendency: f64, // 0.0-1.0: Tendency to see manipulation
pub technical_focus: f64, // 0.0-1.0: TA vs fundamental analysis
}
impl AIPersonalityEngine {
pub fn new() -> Self {
let porky = AIPersonality {
name: "Porky".to_string(),
personality_traits: PersonalityTraits {
skepticism: 0.8, // Highly skeptical
optimism: 0.3, // Generally pessimistic
aggression: 0.9, // Very forceful
conspiracy_tendency: 0.9, // High conspiracy detection
technical_focus: 0.4, // More fundamental analysis
},
analysis_engine: AnalysisEngine::new_porky(),
learning_parameters: LearningParameters::conservative(),
sentiment_bias: -0.2, // Slightly bearish bias
confidence_threshold: 0.7,
};
let perky = AIPersonality {
name: "Perky".to_string(),
personality_traits: PersonalityTraits {
skepticism: 0.6, // Moderately skeptical
optimism: 0.7, // Generally optimistic
aggression: 0.5, // Balanced approach
conspiracy_tendency: 0.7, // Moderate conspiracy detection
technical_focus: 0.8, // Heavy technical analysis
},
analysis_engine: AnalysisEngine::new_perky(),
learning_parameters: LearningParameters::aggressive(),
sentiment_bias: 0.1, // Slightly bullish bias
confidence_threshold: 0.6,
};
Self {
porky,
perky,
knowledge_base: SharedKnowledgeBase::new(),
interaction_history: Vec::new(),
}
}
/// Process market data and generate analysis from both personalities
pub fn analyze_market_data(
&mut self,
market_data: &MarketData,
) -> DualAnalysis {
// Porky's analysis (skeptical, conspiracy-focused)
let porky_analysis = self.porky.analyze(market_data, &self.knowledge_base);
// Perky's analysis (technical, optimistic)
let perky_analysis = self.perky.analyze(market_data, &self.knowledge_base);
// Update shared knowledge base
self.knowledge_base.add_market_data(market_data);
// Generate combined insight
let consensus = self.find_consensus(&porky_analysis, &perky_analysis);
DualAnalysis {
porky: porky_analysis,
perky: perky_analysis,
consensus,
timestamp: chrono::Utc::now(),
}
}
/// Generate dialogue between personalities
pub fn generate_dialogue(
&mut self,
topic: &DialogueTopic,
) -> Vec<DialogueExchange> {
let mut dialogue = Vec::new();
// Porky opens with skeptical take
let porky_opening = self.porky.generate_statement(topic, &self.knowledge_base);
dialogue.push(DialogueExchange {
speaker: "Porky".to_string(),
content: porky_opening,
sentiment: self.porky.calculate_sentiment(topic),
timestamp: chrono::Utc::now(),
});
// Perky responds with technical perspective
let perky_response = self.perky.respond_to(&dialogue[0], topic, &self.knowledge_base);
dialogue.push(DialogueExchange {
speaker: "Perky".to_string(),
content: perky_response,
sentiment: self.perky.calculate_sentiment(topic),
timestamp: chrono::Utc::now(),
});
// Continue dialogue for 3-5 exchanges
for i in 0..3 {
if i % 2 == 0 {
// Porky's turn
let response = self.porky.continue_dialogue(&dialogue, topic);
dialogue.push(DialogueExchange {
speaker: "Porky".to_string(),
content: response,
sentiment: self.porky.calculate_sentiment(topic),
timestamp: chrono::Utc::now(),
});
} else {
// Perky's turn
let response = self.perky.continue_dialogue(&dialogue, topic);
dialogue.push(DialogueExchange {
speaker: "Perky".to_string(),
content: response,
sentiment: self.perky.calculate_sentiment(topic),
timestamp: chrono::Utc::now(),
});
}
}
// Store dialogue in interaction history
self.interaction_history.push(Interaction {
interaction_type: InteractionType::Dialogue,
topic: topic.clone(),
exchanges: dialogue.clone(),
timestamp: chrono::Utc::now(),
});
dialogue
}
/// Learn from user feedback and market outcomes
pub fn learn_from_feedback(
&mut self,
feedback: &UserFeedback,
market_outcome: &MarketOutcome,
) {
// Update Porky's learning parameters based on accuracy
if feedback.porky_accuracy > 0.7 {
self.porky.learning_parameters.learning_rate *= 1.1;
} else {
self.porky.learning_parameters.learning_rate *= 0.9;
}
// Update Perky's learning parameters
if feedback.perky_accuracy > 0.7 {
self.perky.learning_parameters.learning_rate *= 1.1;
} else {
self.perky.learning_parameters.learning_rate *= 0.9;
}
// Update personality traits based on market outcomes
self.adjust_personality_traits(market_outcome);
// Add to knowledge base
self.knowledge_base.add_feedback(feedback, market_outcome);
}
fn find_consensus(
&self,
porky: &Analysis,
perky: &Analysis,
) -> ConsensusAnalysis {
let avg_sentiment = (porky.sentiment + perky.sentiment) / 2.0;
let confidence_spread = (porky.confidence - perky.confidence).abs();
let agreement_level = if confidence_spread < 0.2 {
AgreementLevel::HighAgreement
} else if confidence_spread < 0.5 {
AgreementLevel::ModerateAgreement
} else {
AgreementLevel::Disagreement
};
ConsensusAnalysis {
combined_sentiment: avg_sentiment,
agreement_level,
key_points: self.extract_common_points(porky, perky),
divergent_views: self.extract_divergent_views(porky, perky),
}
}
fn adjust_personality_traits(&mut self, outcome: &MarketOutcome) {
// If market crashed and Porky was more bearish, increase his confidence
if outcome.market_change < -0.1 && self.porky.sentiment_bias < 0.0 {
self.porky.personality_traits.skepticism =
(self.porky.personality_traits.skepticism + 0.05).min(1.0);
}
// If market pumped and Perky was bullish, increase his optimism
if outcome.market_change > 0.1 && self.perky.sentiment_bias > 0.0 {
self.perky.personality_traits.optimism =
(self.perky.personality_traits.optimism + 0.05).min(1.0);
}
}
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct LearningParameters {
pub learning_rate: f64,
pub memory_decay: f64,
pub pattern_recognition_threshold: f64,
pub adaptation_speed: f64,
}
impl LearningParameters {
pub fn conservative() -> Self {
Self {
learning_rate: 0.01,
memory_decay: 0.995,
pattern_recognition_threshold: 0.8,
adaptation_speed: 0.5,
}
}
pub fn aggressive() -> Self {
Self {
learning_rate: 0.05,
memory_decay: 0.99,
pattern_recognition_threshold: 0.6,
adaptation_speed: 1.2,
}
}
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SharedKnowledgeBase {
pub market_patterns: HashMap<String, PatternData>,
pub token_histories: HashMap<String, TokenHistory>,
pub sentiment_correlations: Vec<SentimentCorrelation>,
pub manipulation_indicators: Vec<ManipulationPattern>,
pub learning_iterations: u64,
}
impl SharedKnowledgeBase {
pub fn new() -> Self {
Self {
market_patterns: HashMap::new(),
token_histories: HashMap::new(),
sentiment_correlations: Vec::new(),
manipulation_indicators: Vec::new(),
learning_iterations: 0,
}
}
pub fn add_market_data(&mut self, data: &MarketData) {
// Update token history
let history = self
.token_histories
.entry(data.symbol.clone())
.or_insert_with(TokenHistory::new);
history.add_data_point(data);
// Detect patterns
if let Some(pattern) = self.detect_pattern(data, history) {
self.market_patterns.insert(pattern.id.clone(), pattern);
}
// Check for manipulation signals
if let Some(manipulation) = self.detect_manipulation(data, history) {
self.manipulation_indicators.push(manipulation);
}
self.learning_iterations += 1;
}
fn detect_pattern(
&self,
current: &MarketData,
history: &TokenHistory,
) -> Option<PatternData> {
// Implement pattern detection algorithms
// Look for common crypto patterns: pump & dump, accumulation, etc.
if history.data_points.len() < 10 {
return None;
}
let recent_volume = history.recent_average_volume(5);
let historical_volume = history.historical_average_volume();
// Detect pump pattern
if current.volume > historical_volume * 5.0
&& current.price_change > 0.2 {
return Some(PatternData {
id: format!("pump_{}", current.timestamp),
pattern_type: PatternType::Pump,
confidence: 0.8,
timestamp: current.timestamp,
metadata: format!("Volume spike: {}x normal",
current.volume / historical_volume),
});
}
None
}
fn detect_manipulation(
&self,
current: &MarketData,
history: &TokenHistory,
) -> Option<ManipulationPattern> {
// Porky's specialty: detecting market manipulation
// Look for wash trading patterns
if self.is_wash_trading(current, history) {
return Some(ManipulationPattern {
pattern_type: ManipulationType::WashTrading,
confidence: 0.75,
evidence: vec![
"Repetitive volume patterns".to_string(),
"Unusual bid-ask spreads".to_string(),
],
timestamp: current.timestamp,
});
}
// Look for coordinated pump signals
if self.is_coordinated_pump(current, history) {
return Some(ManipulationPattern {
pattern_type: ManipulationType::CoordinatedPump,
confidence: 0.85,
evidence: vec![
"Sudden volume spike".to_string(),
"Social media coordination signals".to_string(),
],
timestamp: current.timestamp,
});
}
None
}
fn is_wash_trading(&self, current: &MarketData, history: &TokenHistory) -> bool {
// Simplified wash trading detection
// In reality, this would be much more sophisticated
let volume_variance = history.volume_variance();
let price_volatility = history.price_volatility();
// High volume with low price movement suggests wash trading
current.volume > history.average_volume() * 3.0
&& current.price_change.abs() < 0.02
&& volume_variance > 2.0
}
fn is_coordinated_pump(&self, current: &MarketData, history: &TokenHistory) -> bool {
// Look for pump characteristics
let volume_spike = current.volume / history.average_volume();
let price_spike = current.price_change;
volume_spike > 10.0 && price_spike > 0.5 && current.market_cap < 10_000_000.0
}
}
#[derive(Debug, Clone)]
pub struct ResponseGenerator {
pub porky_templates: Vec<ResponseTemplate>,
pub perky_templates: Vec<ResponseTemplate>,
pub context_window: usize,
}
#[derive(Debug, Clone)]
pub struct ResponseTemplate {
pub trigger_conditions: Vec<TriggerCondition>,
pub response_patterns: Vec<String>,
pub personality_weight: f64,
pub context_sensitivity: f64,
}
impl ResponseGenerator {
pub fn new() -> Self {
let porky_templates = vec![
ResponseTemplate {
trigger_conditions: vec![
TriggerCondition::MarketPump,
TriggerCondition::HighVolume,
],
response_patterns: vec![
"Hold up, folks! This pump looks suspicious...".to_string(),
"I'm seeing all the classic signs of manipulation here...".to_string(),
"Don't fall for this obvious pump and dump scheme!".to_string(),
],
personality_weight: 0.9, // High weight for Porky's skepticism
context_sensitivity: 0.8,
},
ResponseTemplate {
trigger_conditions: vec![
TriggerCondition::MarketCrash,
TriggerCondition::HighFear,
],
response_patterns: vec![
"I told you this was coming! The whales are dumping...".to_string(),
"This crash was orchestrated. Follow the whale wallets!".to_string(),
"Retail gets rekt again while insiders profit...".to_string(),
],
personality_weight: 0.95,
context_sensitivity: 0.7,
},
];
let perky_templates = vec![
ResponseTemplate {
trigger_conditions: vec![
TriggerCondition::TechnicalBreakout,
TriggerCondition::VolumeConfirmation,
],
response_patterns: vec![
"Now this is a clean breakout! RSI confirming...".to_string(),
"The technicals are screaming bullish divergence!".to_string(),
"Volume profile supports this move higher...".to_string(),
],
personality_weight: 0.85,
context_sensitivity: 0.9,
},
ResponseTemplate {
trigger_conditions: vec![
TriggerCondition::BearishDivergence,
TriggerCondition::WeakVolume,
],
response_patterns: vec![
"Hmm, seeing bearish divergence on the indicators...".to_string(),
"Volume isn't confirming this move. Could be a fake-out...".to_string(),
"The charts are warning us - momentum is weakening...".to_string(),
],
personality_weight: 0.7,
context_sensitivity: 0.85,
},
];
Self {
porky_templates,
perky_templates,
context_window: 10,
}
}
pub fn generate_porky_response(
&self,
market_data: &MarketData,
context: &[DialogueExchange],
knowledge_base: &SharedKnowledgeBase,
) -> String {
// Find matching templates based on current conditions
let conditions = self.analyze_conditions(market_data, knowledge_base);
let matching_templates = self.find_matching_templates(&self.porky_templates, &conditions);
if matching_templates.is_empty() {
return self.generate_fallback_porky_response(market_data);
}
// Select best template based on context and personality weight
let best_template = self.select_best_template(&matching_templates, context);
// Generate response with dynamic content injection
self.inject_dynamic_content(
&best_template.response_patterns[0],
market_data,
knowledge_base
)
}
pub fn generate_perky_response(
&self,
market_data: &MarketData,
context: &[DialogueExchange],
knowledge_base: &SharedKnowledgeBase,
) -> String {
let conditions = self.analyze_conditions(market_data, knowledge_base);
let matching_templates = self.find_matching_templates(&self.perky_templates, &conditions);
if matching_templates.is_empty() {
return self.generate_fallback_perky_response(market_data);
}
let best_template = self.select_best_template(&matching_templates, context);
self.inject_dynamic_content(
&best_template.response_patterns[0],
market_data,
knowledge_base
)
}
fn inject_dynamic_content(
&self,
template: &str,
market_data: &MarketData,
knowledge_base: &SharedKnowledgeBase,
) -> String {
let mut response = template.to_string();
// Inject real market data
if market_data.price_change > 0.0 {
response = response.replace("{PRICE_MOVEMENT}",
&format!("up {:.2}%", market_data.price_change * 100.0));
} else {
response = response.replace("{PRICE_MOVEMENT}",
&format!("down {:.2}%", market_data.price_change.abs() * 100.0));
}
// Inject volume data
if let Some(token_history) = knowledge_base.token_histories.get(&market_data.symbol) {
let volume_multiple = market_data.volume / token_history.average_volume();
if volume_multiple > 2.0 {
response = response.replace("{VOLUME_ANALYSIS}",
&format!("Volume is {}x normal!", volume_multiple as u32));
}
}
// Add timestamp context
response = response.replace("{TOKEN}", &market_data.symbol);
response
}
fn analyze_conditions(
&self,
market_data: &MarketData,
knowledge_base: &SharedKnowledgeBase,
) -> Vec<TriggerCondition> {
let mut conditions = Vec::new();
// Analyze market conditions
if market_data.price_change > 0.2 {
conditions.push(TriggerCondition::MarketPump);
} else if market_data.price_change < -0.15 {
conditions.push(TriggerCondition::MarketCrash);
}
// Check volume conditions
if let Some(history) = knowledge_base.token_histories.get(&market_data.symbol) {
if market_data.volume > history.average_volume() * 3.0 {
conditions.push(TriggerCondition::HighVolume);
}
}
// Check for manipulation patterns
if knowledge_base.manipulation_indicators
.iter()
.any(|m| m.timestamp > market_data.timestamp - 3600) {
conditions.push(TriggerCondition::ManipulationDetected);
}
conditions
}
}
// Supporting data structures
#[derive(Debug, Clone, PartialEq)]
pub enum TriggerCondition {
MarketPump,
MarketCrash,
HighVolume,
WeakVolume,
TechnicalBreakout,
BearishDivergence,
VolumeConfirmation,
HighFear,
ManipulationDetected,
}
#[derive(Debug, Clone)]
pub struct DialogueExchange {
pub speaker: String,
pub content: String,
pub sentiment: f64,
pub timestamp: chrono::DateTime<chrono::Utc>,
}